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The effects of a sidewall with finite thermal conductivity on confined turbulent
thermal convection has been investigated using direct numerical simulation. The
study is motivated by the observation that the heat flowing through the lateral wall is
not always negligible in the low-aspect-ratio cells of several recent experiments. The
extra heat flux modifies the temperature boundary conditions of the flow and therefore
the convective heat transfer. It has been found that, for usual sidewall thicknesses,
the heat travelling from the hot to the cold plates directly through the sidewall is
negligible owing to the additional heat exchanged at the lateral fluid/wall interface. In
contrast, the modified temperature boundary conditions alter the mean flow yielding
significant Nusselt number corrections which, in the low Rayleigh number range, can
change the exponent of the Nu vs. Ra power law by 10%.

1. Introduction
An aim of research in thermally driven convective turbulence is to try to achieve

the largest Rayleigh number (Ra) variation within compact and highly controllable
experimental devices. The need for increasing the Rayleigh number as much as
possible comes from astrophysical (convection in stars) geophysical (atmospheric and
oceanic convection) and industrial (cooling problems) applications with Rayleigh
number ranging from 106 up to > 1020. Another strong motivation is the ‘ultimate
regime’ predicted by Kraichnan (1962) in which the non-dimensional heat transfer
Nusselt number Nu increases as Ra1/2 (plus logarithmic corrections); this regime
should appear at Ra > 1021 (Kraichnan, 1962) but has been only indicated (Chavanne
et al. 1997, among many others), never directly observed for a sufficiently wide range
of Rayleigh numbers.

A laboratory realization of a thermally driven turbulent flow consists of two
horizontal plates whose vertical spacing is h and representative horizontal dimension
L. When a constant temperature difference ∆ is established between the plates (the
lower being warmer than the upper) fluid motion is generated owing to the buoyancy
induced by the fluid thermal expansion. The relevant governing parameters are
the Rayleigh number Ra = gαf∆h

3/(νfkf), the Prandtl number Pr = νf/kf and the
cell aspect ratio Γ = L/h, where αf , νf and kf are respectively the isobaric thermal
expansion coefficient, the kinematic viscosity and the thermal diffusivity of the working
fluid. Given the Ra definition, once the working fluid has been selected (thus fixing
νf , kf and αf) only ∆ and h can be varied†; the latter determines the size of the

† νf , kf and αf could be varied by changing the mean flow temperature, but the different
temperature dependence of νf and kf does not generally preserve the Prandtl number and, in
addition, does not enable big variations of the Rayleigh number.
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experimental apparatus and therefore the cost and the controllability of the set-up;
∆, on the other hand, can be freely varied provided αf∆ is small enough (< 0.1– 0.2)
for the Boussinesq approximation to remain valid (see Niemela & Sreenivasan 2002).
Within this scenario, for a given fluid and experimental set-up, Ra can only span one
or two orders of magnitude, which is not enough for the above-mentioned problems.
A possible alternative is an experimental set-up in which the relative plate distance h
can be changed; this, however also modifies the aspect ratio Γ which has been shown
to have an influence on the flow dynamics (Wu & Libchaber 1992).

A clever solution to these problems was described in Threlfall (1975) who suggested
using helium gas close to the critical-point temperature and modifying its mean
pressure. Although very close to the critical point of helium large Prandtl number
changes can occur, this allows the variation of νf and kf by several orders of
magnitude with limited changes to their ratio (i.e. the Prandtl number) and thus
the Rayleigh number is varied by ten or more orders of magnitude with the same
apparatus keeping Pr (approximately) constant and retaining the validity of the
Boussinesq approximation. In the last two decades this technique has been used by
several research teams who have built small-aspect-ratio cylindrical cells of various
sizes (1 cm 6 h 6 1 m) reaching Rayleigh numbers up to 1017 (Niemela et al. 2000).
The main drawback is that the absolute pressure in these cells must be varied in the
range pmin ' 70 Pa to pmax ' 1.3× 106 Pa and therefore the sidewall must provide, in
addition to the thermal insulation, enough mechanical resistance to prevent the cell
from deforming or even exploding (or imploding) under the action of the pressure
inside. Accordingly these cells have a thin stainless steel sidewall that, even though
much less thermally conducting than the copper of the horizontal plates is much
more conducting than the inner fluid. In addition, in small-aspect-ratio geometries
the sidewall surface is comparable or bigger than the plate surface and therefore its
thermal effect not always negligible.

Until very recently the heat flowing through the sidewall was either neglected or
accounted for by subtracting the corresponding heat transferred to an empty cell.
However, Ahlers (2001) and Roche et al. (2001) have shown by phenomenological
models that the sidewall correction is not a second order effect and the empty cell
correction is not accurate. This was confirmed by Niemela & Sreenivasan (2002)
who simulated an idealized two-dimensional convection problem with a conduct-
ing side surface and a fly-wheel-like structure in the bulk in order to mimic the
mean flow sweeping the walls. These non-negligible effects are not surprising since
the thin thermal boundary layers at the horizontal plates make the temperature
gradients steeper inside the lateral wall thus increasing its heat flow. On the other
hand the modified lateral wall temperature distribution alters the inner flow and
therefore the convective heat transfer. This two-way coupling between fluid motion
and wall conductivity has never been investigated even though it might be the
main reason for the disagreement between different experiments performed in similar
conditions.

The main aim of this paper is to evaluate by direct numerical simulations the
differences between an ideal set-up with perfectly adiabatic sidewalls and an exper-
iment whose sidewall has finite heat conductivity. It is motivated by some differences
observed in the experiments by Chavanne et al. (2001); Niemela et al. (2000) and
Roche et al. (2001); therefore, the simulations are performed for a cylindrical cell of
aspect ratio Γ = 1/2; this work, however, is relevant to all thermally driven flows in
small-aspect-ratio cells and the results might be used as a guideline for more accurate
sidewall corrections.
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Figure 1. Sketch of the cell (vertical plane cut).

2. Problem and set-up
Consider a fluid with physical properties denoted by subscript f contained in a

cylindrical cell of inner radius Rf and height h (see figure 1) heated from below by
a horizontal plate at constant temperature Th and cooled from above by a similar
plate at temperature Tc with Tc < Th. The wetted surfaces are all no-slip. The lateral
wall has a thickness e = Rw − Rf and thermal properties different from those of
the fluid and denoted by subscript lw. The flow investigated in this paper is that
developing in the cylindrical cell of aspect ratio Γ = 2Rf/h = 1/2 with a conductive
sidewall. Following Roche et al. (2001) a wall number W = 4λlwe/(λf2Rf) can be
defined to quantify the sidewall effects, which represents the ratio of the diffusive
thermal resistances of helium and lateral wall layers.

The purpose of the set-up sketched in figure 1 is to mimic the flow conditions of an
experiment in which the copper horizontal plates in contact with gaseous helium can
be approximated well by constant-temperature surfaces, at least within the range of
Rayleigh numbers investigated here. The sidewall is not adiabatic for r = Rf since the
conductivity of the steel is much greater than that of the gaseous helium. The lateral
wall however can be considered adiabatic at r = Rw owing to the external vacuum
jacket preventing any heat exchange but radiation, which at very low temperatures
(∼ 4 K) can be safely neglected.

If Vf is the fluid domain 0 6 z 6 h, 0 6 r 6 Rf and 0 6 φ < 2π with φ the azimuthal
coordinate, and V the total domain the non-dimensional Navier–Stokes equations
with the Boussinesq approximation equations are

Du

Dt
= −∇p+ θẑ +

(
Pr

Ra

)1/2

∇2u, ∇ · u = 0 on Vf,

Dθ

Dt
=

1

(PrRa)1/2

ρfCpf

ρC
∇ ·
(
λ

λf
∇θ
)

on V ,

where ρf , Cpf and λf with kf = λf/(ρfCpf) are, respectively, the density, constant
pressure specific heat and thermal conductivity of the fluid and ρ, C and λ the same
quantities for the fluid or the solid (ρlw Clw and λlw) depending on the point in
the domain. The following material properties have been assumed, respectively for
gaseous helium and stainless steel at T = 4.5 K: λf = 0.0087 W K−1 m−1, (ρCp)f =
3190 J K−1 m−3, λlw = 0.4 W K−1 m−1 and (ρC)lw = 30000 J K−1 m−3 (J. Niemela and
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Figure 2. Solution of the conductive heat transfer problem in discontinuous media. Medium 1 is
copper, 2 stainless steel and 3 gaseous helium. The solutions in (b, c) in are reported at t = 2.5, 5,
7.5, 10, 20 and 40, respectively from the lower line to the upper one.

P. Roche, Personal Communication).† ẑ is the unit vector pointing in the opposite
direction to gravity, u the velocity vector, p the pressure (separated from its hydrostatic
contribution) and θ the non-dimensional temperature. The equations have been made
non-dimensional using the free-fall velocity U =

√
gαf∆h, the distance between hot

and cold plates h and their temperature difference ∆ = Th −Tc; the non-dimensional
temperature θ is defined as θ = (T − Tc)/∆ so that 0 6 θ 6 1.

The above equations have been written in a cylindrical coordinate frame and
discretized on a staggered mesh by central second-order-accurate finite-difference ap-
proximations. The numerical method is described in Verzicco & Camussi (1999) where
further details of the numerical procedure can be found, the only relevant change
being the presence of an immersed boundary procedure (Fadlun et al. 2000) allowing
the solution of the momentum and temperature equations on different domains.

As the physical problem and the structure of the numerical code are essentially
the same as that of Verzicco & Camussi (1999, 2003) we have used those simulations
to assess the resolution requirements and to validate the numerical procedure. In
particular grids from 33× 49× 97 up to 97× 65× 257 nodes, respectively in the
azimuthal, radial and vertical directions, with a non-uniform mesh in r and z, have
been used for Ra in the range 2× 106–2× 109; this yielded a mesh size between 1
and 2 Kolmogorov scales in the bulk of the flow and 6–10 nodes in the thermal
boundary layer which was always thinner than the viscous layer (Verzicco & Camussi
2003). For the simulations with a conducting sidewall 5 nodes were placed in the
wall thickness. As a grid refinement check one case at Ra = 2 × 108 has been
run with the grids 97× 65× 193 and 49× 49× 129 obtaining a Nusselt number,
respectively, of 48.18 ± 2.87 and 48.40 ± 2.98. Finally, since there is the new feature
of the temperature equation for a variable-property medium an additional validation
test has been performed; although the validation is not directly related to the main
problem it provides an analytical benchmark for the simulation of the heat conduction
in materials with non-constant properties. By turning off the momentum equation
and setting the material properties so that three cylinders of different material are
arranged concentrically (figure 2a), starting from θ = 0 everywhere and with the
given boundary conditions, the temperature must attain a steady state with a linear
piecewise profile (figure 2b). In addition, when the spatial coordinate is scaled by

† For the oxygen-free copper of the horizontal plates the material parameters are
λcu = 1000 W K−1 m−1 and (ρC)cu = 890 J K−1 m−3 yielding a thermal diffusivity kcu which is,
respectively, 105 and 106 times bigger than that of the fluid and the sidewall. This explains why, for
this range of Rayleigh numbers, the temperature on the horizontal plates can be safely considered
constant.
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Figure 3. Instantaneous vertical snapshot of the temperature distribution (∆θ = 0.05) at
Ra = 2× 108, Pr = 0.7 and W = 3.678. q1 indicates the heat flowing from the plate to the fluid, q2

from the plate to the sidewall, q3 only through the sidewall and q4 from the sidewall to the fluid
(qi are the heat flux densities).

the local thermal conductivity the three segments must collapse onto a unique line
(figure 2c); these results, for the case of copper, steel and helium, confirm the analytical
prediction for the pure conductive problem.

The length of each run was fixed by the statistics convergence; in particular,
requiring error bars of the order of 3% on the heat transfers from the horizontal
plates (see § 3 for the various definitions) the simulation of 100–170 large-eddy-
turnover times Tl (with Tl = 2h/U) was needed for 2× 106 6 Ra 6 2× 109. Verzicco
& Camussi (2003) showed that these simulation lengths are also sufficient for the
accurate evaluation of the second-order statistics.

3. Results
The global heat transport in the flow, normalized by the pure conductive contribu-

tion, is expressed by the Nusselt number that can be written as Nu = 1+
√
RaPr〈uzθ〉;

the angular brackets indicate an average over time and over the whole fluid domain
Vf . If the sidewall were perfectly adiabatic, this definition would be, on average,
equivalent to the normalized heat flux density evaluated at the wetted hot and cold

plates Qf = ∂̃θ/∂z|w where |w indicates that the derivative is computed at the wall and
the tilde implies an average in time and over the fluid/plate surface (0 6 r 6 Rf). In
the present case, in contrast, part of the heat can flow through the side solid wall and

the two Nusselt definitions do not match. The quantity Q = (λ/λf)∂θ/∂z|w , with the
overbar indicating an average in time and over the whole plate surface (0 6 r 6 Rw)
and λ equal to λf or λlw depending on the surface element, is the total heat flux density
input of the system. We can now separate the heat flux entering the fluid directly
from the horizontal plate Qf from that escaping through the sidewall Qw = Q− Qf
(see figure 3); only part of Qw flows from the hot to the cold plate directly through
the sidewall since the rest enters the fluid through the lateral wetted surface (figure 3);
this additional heat flux in turn changes the motion inside the cell thus establishing
a feedback between heat transfer and flow configuration.

In a laboratory experiment Q is the only measurable quantity and Qw must be
estimated. Ahlers (2001) and Roche et al. (2001) propose simplified models to quantify
Qw although former correctly points out that the assumption of Qw as the relevant
correction deserves further investigation. We will show that the difference between Nu
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Ra Q Nu Nuid f C

2× 106 14.98 13.42 10.79 0.144 0.243
2× 107 27.22 24.80 20.66 0.138 0.200
2× 108 49.28 48.18 41.32 0.116 0.166
2× 109 107.44 104.53 94.14 0.091 0.110

Table 1. Heat transfer and related quantities for the flow at Pr = 0.7 and W = 0.919.
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Figure 4. (a) Heat transfer vs. Ra, (b) compensated heat transfer at Pr = 0.7 and W = 0.919:
�, Nuid; +, (1− f)Q; ∗, Nu; ×, Q.

and Q is smaller than Qw since part of the heat initially flowing through the sidewall
enters the flow through the lateral surface.

The situation is considerably more complex when the ideal adiabatic sidewall and
the real flow cases are compared. In fact, the modified temperature conditions on
the sidewall produce a different mean flow and therefore a different convective heat
transport. In this context, the only way to quantify the sidewall effect is by a com-
parison of the finite conductivity results with ‘ideal flow’ simulations in which the
wall has zero thickness (Rw = Rf) and therefore the adiabatic boundary condition
is applied at the wetted side surface (r = Rf). For the latter flows the ideal Nusselt

Nuid = 1 +
√
RaPr〈uzθ〉 can be computed and the quantity C = (Nu−Nuid)/Nuid is

taken as the net sidewall effect. In table 1 we report the values of these quantities in-
cluding a factor f = (Q− Qf)/Q = Qw/Q which Ahlers (2001) uses to correct the side-
wall effectN = (1− f)Q; every simulation is for a wall number W = 0.919 obtained
from a cell with e = 0.0025h and λlw/λf = 46 (stainless steel and gaseous helium).

In figure 4 we report the variation of the different heat transfer definitions with Ra
showing that, depending on the particular quantity, the slopes can be substantially
altered; with an error bar of the order of ±4% all data approximately agree and the
differences might be interpreted as ‘scatter’. However, the present quantities have been
computed with a total error bar of the order of 3–4%: this implies that the Q vs. Ra
relation can be fitted with a 0.288 exponent power law, while the exponent is 0.309 for
the Nuid vs. Ra data. The differences are even more pronounced for the local slopes
and this is particularly critical for this flow since, as observed by Verzicco & Camussi
(2003), there is evidence of a transition near Ra ≈ 109, due to a change of the mean
flow structure. This is detected in the compensated Nusselt number as a continuous
increase of the slope with respect to the 2/7 value; therefore, when in addition to error
bars further scatter is introduced by the sidewall this transition might be hidden or in
the wrong position. Further comments on the data of table 1 are that the differences 0
between Q and Nu are much smaller than the correction given by f, thus confirming
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Figure 5. Vertical profiles of (a) mean vertical velocity at r/h = 0.235 and (b) wall temperature
r/h = 0.25 at Ra = 2× 108 and Pr = 0.7; , W = 0; , W = 0.919; , W = 3.678.

that a large part of the heat current Qw flows into the fluid through the sidewall
interface. The factor f decreases with Ra less than the prediction by Ahlers (2001)
and an extrapolation to higher Ra would give a correction of the order of 5% at
Ra ≈ 1011; on account of the previous arguments, however, the difference between Q
and Nu would be negligible since it is already only 2.5% at Ra = 2× 109. The results
obtained by Niemela & Sreenivasan (2002) are in agreement with those by Ahlers
(2001) and this is consistent with the fact that also in their paper the mean flow, and
therefore the sidewall boundary layer, was imposed from experimental measurements.

The heat transport differences are much more pronounced when Nu is compared
with the ideal value Nuid; in this case, C ranges from 24% to 11% for 2×106 6 Ra 6
2× 109 and an extrapolation yields C ≈ 5% at Ra ≈ 1011. As previously mentioned
these differences are due to changes in the mean flow which will be analysed in detail.
According to figure 3 several effects can be ascribed to the conductive lateral surface;
in particular, the heat flowing through the sidewall causes the horizontal thermal
boundary layers to thicken in the external radial region, thus locally decreasing the
heat exchange. On the other hand, the lateral thermal layer acts as an additional
forcing on the mean flow structures which are modified compared to the ideal
adiabatic sidewall flow. Verzicco & Camussi (2003) have observed that for Ra 6 1010

in this geometry the mean flow consists of an asymmetric large-scale roll completely
filling the cell superposed on axisymmetric toroidal rings attached to the horizontal
plates. If the sidewall is heated (or cooled) the vertical thermal layers add buoyancy to
the rings and strengthen their circulation. These strengthened rings, in turn, drive the
fluid from the plates to the lateral wall thus further heating or cooling this surface;
evidence of these phenomena is given in figures 5 and 6 where the results are shown
for two different values of W and compared with the ideal flow. Note that the value
W = 3.678 was obtained assuming stainless steel in contact with gaseous helium
and e = 0.01h which for a height h = 10 cm implies a sidewall thickness e = 1 mm:
at Ra = 2× 108 the difference between Q and Nu was 4.6% while the corrections
C = 0.245 and f = 0.223 were twice value for the thinner wall case (W = 0.919). The
sensitivity of the corrections to the wall thickness could be the reason for the scatter
of experimental results obtained in (apparently) similar conditions.

Table 1 shows that the effect of the lateral wall on the heat transfer decreases as Ra
increases and this is due to the increase of the effective thermal conductivity of the
fluid λeff = Nuλ which eventually becomes larger than that of the wall. Nevertheless,
the consequences of the modified temperature boundary conditions on the mean flow
persist at high Rayleigh numbers also and this is why at Ra = 2×109 the correction C
is more than 11% even though the difference between Q and Nu is only 2%. In figure 7
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Figure 6. Mean temperature fields at Ra = 2× 108, Pr = 0.7; (a) W = 0, (b) W = 0.919
and (c) W = 3.678. ∆θ = 0.05.

we report the comparison between ideal and finite-conductivity flows for velocity and
dissipation fields at Ra = 2×108. The flow topology is the same in both cases but the
velocity peaks are very different (50% for the radial velocity at the plates and 30%
for the vertical velocity). An important observation is that in the junction regions (see
figure 7) the fluid also exchanges heat with the sidewall and, owing to buoyancy, it
gains additional momentum compared to an insulating wall; this is a cause of mean
flow modification that, in turn, affects the Nusselt number. Another consequence is
the alteration of the sidewall boundary layers and therefore of the kinetic energy and
temperature variance dissipation rates. This might be relevant to the recent theory
by Grossmann & Lohse (2000) that separates different flow regimes depending on
the dominant dissipation contributions (bulk or boundary layer). Accordingly, since
flows in low-aspect-ratio cells have a substantial dissipation input from the sidewall,
this theory might possibly need corrections accounting for the finite conductivity.

It is interesting to note, both from figures 6 and 7(d ), that the overall effect
of a conducting sidewall is a ‘continuation’ of the plates on part of the vertical
surface with an increase of the active heat exchange surface. This was conjectured
by Roche et al. (2001) who indicated this effect as the relevant correction to be
accounted for; in particular, using experimental data with different wall numbers W
they were able to compute a ‘corrected’ Nusselt Nuc from the implicit relation Nuc =
Q/{1+A2/(ΓNuc)[

√
1 + (2WΓNuc/A2]−1}, with A depending on the aspect ratio of

the cell and on the working fluid. They used A = 0.80 yielding, with the present data,
differences between Nuc and Q in the range 37.4–14.6% for 2× 106 6 Ra 6 2× 109.
If Nuc is interpreted as Nuid we see that the correction is in very good agreement
with the values of table 1. Indeed, Roche et al. (2001) for a cell with e = 0.0025h and
a stainless steel/gaseous helium interface computed W = 0.6 which in their formula
gives corrections 28.4–11.3% for 2× 106 6 Ra 6 2× 109. These values underestimate
the correction, thus indicating that their fit procedure with different values for W
might give a slightly different estimate for A.

One additional simulation was carried out at Ra = 2× 108, Pr = 4 and W = 0.013
with the aim of checking the effect of the sidewall when the working fluid is water.
Since the thermal conductivity of water is about 60 times larger than that of gaseous
helium, it is reasonable to expect a negligible effect of the steel lateral surface whose
thermal conductivity is 0.65 times smaller than that of water (data from Ahlers 2001).
This is partially confirmed by the factor f = 0.015 which is less than one fifth of
the corresponding value for helium; nevertheless, the difference between Nu and Nuid
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Figure 7. Mean fields at Ra = 2×108 and Pr = 0.7; (a) ur , (b) uz , (c) local kinetic energy dissipation
rate ε, (d ) local temperature variance dissipation rate N. ∆u = ±0.01. For the dissipations there
are 10 contour levels between the maximum value and 20% of the maximum and 5 lines in the
remaining range. Left: ideal adiabatic sidewall, right: sidewall with W = 0.919.

is still appreciable (C = 0.103) owing to the ‘extension’ of the plate surface over the
junction region. While this finding deserves further investigation, especially for the
dependence on Ra, it confirms that the consequences of the modified temperature
boundary conditions are much more severe on the heat transfer than the flux through
the sidewall.

4. Conclusions
In this paper we have investigated the effect of finite sidewall conductivity in

turbulent thermal convection. Using direct numerical simulation we have separated
the heat flux from the lower heated plate into a part entering the fluid Qf and
another contribution through the lateral wall Qw . According to Ahlers (2001), Qw is
larger than the estimate given by the pure conductive assumption since the thermal
boundary layer at the horizontal plates increases the local thermal gradient at the
plate/sidewall junction. Nevertheless the factor f = Qw/Q does not give a correct
estimate of the spurious heat flux since an additional thermal boundary layer forms
at the vertical surface that exchanges further heat with the fluid. As a consequence
the heat flowing only through the sidewall without entering the fluid is much less than
Qw and at Ra = 2× 109, Pr = 0.7 and W = 0.919 it is only of the order of 2% of Q.
A major effect of the spurious heat flux is the generation of a lateral vertical thermal
boundary layer that, adding buoyancy (and momentum) to the fluid, strengthens the
mean flow and changes the heat transfer. These phenomena are accounted for by the
factor C which gives the relative difference between the heat transfer in a flow with
an ideal adiabatic sidewall and a flow with a conductive lateral wall.
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As observed by Roche et al. (2001) its macroscopic effect is an ‘extension’ of the
plate surface and an enhancement of the heat transfer. The consequence for the Nu
vs. Ra relation is a decrease of the power law exponent with respect to the ideal
flow; nevertheless the difference between Nuid and Nu (or Q) decreases with Ra and it
becomes negligible (O(5%)) for Ra = O(1011). Niemela & Sreenivasan (2002) compute
a correction that should be intermediate between f and C since they account for the
heat flowing from the sidewall to the fluid but they do not consider the mean flow
change (which is allowed to scale with Ra without change in form); the qualitative
behaviour of that correction is consistent with the present and previous findings.

As a final comment we conclude that the relevant effect of the sidewall conductivity
is the modification of the mean flow through the changed temperature boundary
conditions and this is responsible for the difference between Nuid and Q, the latter
being the quantity available from experimental measurements. This difference is the
correction to the ‘raw’ Q since the experiments are aimed at approximating as closely
as possible an adiabatic sidewall. On the other hand to measure how much of the
input heat goes in the flow through the bottom plate, regardless of the sidewall nature,
then the factor f must be used.

An additional consequence of this phenomenon is a modification of the dissipation
distributions which might have implications for the recent theory by Grossmann &
Lohse (2000).

The author is indebted to R. Camussi, J. Niemela, P. Roche and G. Ahlers for
fruitful discussions. The paper was prepared with the financial support of CEMeC of
Politecnico di Bari. The technical support of CASPUR (Consorzio interuniversitario
per le Applicazioni di Supercalcolo Per Università e Ricerca) provided by Drs F.
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Chavanne, X., Chillà, F., Chabaud, B., Castaing, B. & Hebral, B. 2001 Turbulent Rayleigh–
Bénard convection in gaseous and liquid He. Phys. Fluids 13, 1300–1320.

Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. 2000 Combined immersed-
boundary/finite-difference methods for three-dimensional complex flow simulations. J. Comput.
Phys. 161, 35–60.

Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech.
407, 27–56.

Kraichnan, R. H. 1962 Turbulent thermal convection at arbitrary Prandtl number. Phys. Fluids 5,
1374–1389.

Niemela, J. J., Skrbek, L., Sreenivasan, R. R. & Donnelly, R. J. 2000 Turbulent convection at
very high Rayleigh numbers. Nature 404, 837–841.

Niemela, J. J. & Sreenivasan, K. R. 2002 Confined turbulent convection. J. Fluid Mech. (submitted).

Roche, P. E., Castaing, B., Chabaud, B., Hebral, B. & Sommeria, J. 2001 Sidewall effects in
Rayleigh–Benard experiments. Eur. Phys. J. B 24, 405–408.

Threlfall, D. C. 1975 Free convection in low temperature gaseous helium. J. Fluid Mech. 67, 17–28.

Verzicco, R. & Camussi, R. 1999 Prandtl number effects in convective turbulence. J. Fluid Mech.
383, 55–73.

Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection
in a slender cylindrical cell. J. Fluid Mech. (to appear).

Wu, X. Z. & Libchaber A. 1992 Scaling relations in thermal turbulence: The aspect-ratio depen-
dence. Phys. Rev. A 45, 842–845.


